Difference between revisions of "Comenius:Solutions - Geographical aspects/Spain/Group 3"

From Wiki de Vega
Jump to: navigation, search
Line 121: Line 121:
 
In BFS achieve that in every two cubic meters of water, produced six kilos per day of biomass. This is thousands of times more than the annual crop of soybean, sunflower and palm, using much less land and less aggressively.
 
In BFS achieve that in every two cubic meters of water, produced six kilos per day of biomass. This is thousands of times more than the annual crop of soybean, sunflower and palm, using much less land and less aggressively.
  
=== Strategies to adapt to rising sea levels ===
+
=== Use of biomass energy ===
Coastal management strategies applicable to climate change to adapt to repeated sea-level rise or a change in the pattern of storms, would be: the rollback, adaptation and defense.
+
  
'''Rollback strategy''': this strategy, as its name suggests, is to roll back human structures that may be affected by the effects of rising sea levels and other consequences of climate change. It requires, first,to provide space to relocate the uses and resources that support the coastal section. If available, this strategy is more consistent with climate change at regional scale, and it doesn't mortgage the area in the future.
+
Biomass is increasingly used in power generation in Europe with Germany as a key issue.
 +
Spain is also beginning to realize the potential of the field and produce electricity from this natural resource. Biomass is considered renewable energy because not only is inexhaustible when used in a sustainable way, but it also believes that its CO2 emissions are zero, because CO2 emissions are the same as the CO2 emitted by the plant during growth.  
  
For example, if the beaches are not confined the generally more advisable strategy is receding, as this is the natural behavior to expect in the beaches and associated dune fields. To make this strategy it would be necessary to enact a land use rules that prevent the installation of new components or activities in vulnerable areas.
+
Traditionally, the farmer has always been a problem get rid of the waste generated by their crops, straw, yard trimmings, etc.. Now, all these residues can be used to generate electricity, either at home or at the industrial level.  
  
In the case of soft cliffs on the rollback strategy, to let nature take its course would have similar implications to those described above for beaches. Also here you will have to define the potentially affected areas, making inventories and valuations of existing assets, limitations in use in certain areas and provide for the abandonment of buildings, etc..
+
Acciona opens in Bibriesca (Burgos) an elective generation plant straw-based biomass. The facility will produce 120 million kWh per year, equivalent to 881,000 barrels of oil, or the electricity consumption of 50,000 homes. This avoids the emission of 115,000 tons of CO2. It is true that the straw c have a very low heating power, which requires a great deal of material to get these figures. Specifically, we will need 100,000 tons of straw necessary. Some criticize that the benefits of using biomass to generate electricity is lost when it moved out the material needed for long distances, as in the case of the plant that Acciona has Sangüesa, which has 25 MW.  
  
For wetlands and similar areas the rollback strategy is the most appropriate in many cases because it will maintain the same total length. In other cases the inland migration of wetlands is impossible becuase of the presence of barriers of various kinds. In some cases there is no alternative and the final result is a reduction in the extent of wetlands, which will be totally or partially submerged. In other cases it is possible to eliminate the barriers (for example in areas that have simply been closed and dried), thereby facilitating migration and / or regeneration of areas previously occupied by wetlands.
+
Acciona is already preparing another plants in Leon, which will have 25 MW and produce 200 million kWh per year and 175,000 tons of biomass burned annually. In this case, fuel will not only straw.  
  
'''Adaptation strategy''': It requires a different approach to erosion and flooding.In the first case, the fighting strategy against erosion requires to relocate structures and to make a flexible use of the coastline. Currently the most common tendency consits in the use of a support vegetation and dissipation that reduces the risk of erosion. In the second case, the risks and costs associated to the process of flooding can be predicted. We can't forget that the flood defenses require continued thereby maintenance.
+
Moreover, agricultural residues are not the only biomass that can be harnessed to produce electricity. Also, and above all, we have forest residues. Forest residues are all plants, twigs and logs that are dried in the forest when the trees are falling branches or die. This is precisely one of the ways in which fires spread: in Spain is not enough forest cleaning, so the fire spreads easily through the forest through forest waste uncollected.  
  
'''The defense strategy''':It consists in building structures to defend or preserve certain human infraestructures from the rising sea level and other effects of climate change. Although this is the strategy that seems to prefer the society for its appearance “aparently” monolitic against erosion or flooding, implies high initial costs and a strong maintenance costs, as, for example, the history of defense and security structures illustrate the Maresme coast.
+
In Guadalajara have learned their lesson in 2005 after 11 people die a checkpoint trying to extinguish a large fire in the region. As a result. Since then, the area is said that 'the forest fire shuts down in winter', referring to the season in which forests are cleaned. As a result of the efforts of the institutions of the province, Iberdrola will open a biomass plant in Corduente 2 MW, which used only waste from forest cleaning.
 
+
Also, we can't consider only one permanent solution to all the problems related with the climate change and its effects on the coast. Because of that, this defense strategy can only be considered for specific stretches of coast, and always reminding the time factor. The bes solution for any selectioned time scale consists in the combination of the three adaptation elements, and all within the framework of a comprehensive plan of the coastal zone.  
+
  
 
<!---'''###### Please do not change anything AFTER this notice! ######''' --->
 
<!---'''###### Please do not change anything AFTER this notice! ######''' --->

Revision as of 07:27, 19 February 2010

Solutions to the effects of global warming on water management from a geographical point of view...proposed by

Es.gif Group 3

Group 3 is conformed by: Vicent: Marcelo, Mar Patricia, Nuria, Pedro



Sustainable urban growth

Proposal: A comprehensive study of the management and optimization of energy in an environment residential within a multi-year program for research, development and evaluation of the elements, techniques and strategies available.

  1. Low temperature thermal energy (Heating, air conditioning, hot water, etc..)
  2. Electricity, chemistry: Generation, storage and hydrogen generation
  3. Materials and construction processes for energy optimization: Insulation, thermal inertia. Phase change materials, etc..
  4. Design. construction and maintenance of quality, cost, benefits: Adaptation to the environment, industrialized construction, automation processes
  5. Housing development with target "zero energy": Projects under implementation


===== Biodiversidad =====:

Proteger las zonas de interés natural promoviendo un uso sostenible del suelo evitando su fragmentación.

Criterios:

• Fomentar la conectividad biológica de los espacios naturales a través de corredores.

• Preservar las zonas vulnerables como son el Litoral, los cursos fluviales y bosques a través de un régimen de protección especial.

• Evitar la impermeabilización de las cubiertas del suelo.

• Controlar las actividades extractivas e industriales que deterioren el Paisaje.

===== Compacidad =====:

Minimizar el consumo de suelo racionalizando los usos.

Fomento del modelo compacto vs disperso

Criterios:

• Procurar el continuo urbano de los crecimientos evitando zonas aisladas.

• Mantener un equilibrio entre la densidad edificada y los espacios públicos de estancia.

• Reorganizar las redes de movilidad fomentando la accesibilidad a los medios de transporte alternativos: TP y Bicicleta

• Planificar espacios públicos habitables que sean confortables, atractivos y accesibles.

• Garantizar la proximidad a espacios verdes urbanos y corredores verdes.

===== Eficiencia =====:

Hacer compatible el planeamiento con la eficiencia de los flujos de energía y ciclos de materia, de acuerdo a la capacidad del territorio.

Criterios:

• Disminuir el consumo de energía, agua y materiales.

• Fomentar el reciclaje y máximo aprovechamiento de los recursos locales con el fin de reducir las emisiones CO2.

• Reducir las alteraciones de los ciclos hídricos a través de sistemas de depuración y reutilización de aguas regeneradas.

• Fomentar el cierre del ciclo de materiales a través de > absorción de materia orgánica.

• Garantizar que la superficie urbanizada se encuentre a < 65dBA, < 5.000kg Nox y < 100grs PM10 diarios


===== Complejidad =====:

Aumento del grado de organización

Fomentar la productividad y actividad en los tejidos urbanos según su tipo y grado de diversidad.

Criterios:

• Procurar que los tejidos centrales tengan índices de diversidad urbana > 5bits información por individuo.

• Equilibrar la relación del techo terciario y el techo residencial para crear la suficiente masa crítica.

• Planificar entornos atractivos que permitan la generación de empleo.


===== Estabilidad =====:

Estructura social estable y cohesionada

Hacer compatible el crecimiento urbano con el perfil de la población sus propios requerimientos socioeconómicos.

Criterios:

• Las políticas de acceso a la vivienda han de dar respuesta a las necesidades y posibilidades de adquisición de la población.

• Los entornos urbanos han de garantizar una accesibilidad y dotación adecuada de la población a los servicios básicos en un radio menor de 300m.

• Las figuras de planificación han de fomentar la mezcla de rentas, edades, culturas y profesiones.

• Garantizar la proximidad a espacios públicos de calidad como son parques, plazas y calles peatonales que fomenten el contacto y relación de las personas.


Immediate application of the renewable energies

The bio-petroleum renewable

The bio-petroleum renewable and his creator, Cristian Gomis


The biological oil, renewable and carbon dioxide absorbed in an endless cycle has been created by the company Bio Fuel System (BFS) in Alicante

Is the green algae, contains hundreds of millions of unicellular organisms per cubic milliliter, and it has taken years to several years with the scientific formula of growing in an artificial environment. Not surprisingly, behind the biofuel future are the departments of Biotechnology, Chemical and Marine Sciences at the Universities of Alicante and Valencia.

In these years we have selected some thirty families of algae strains to chlorophyte that has been fed with sunlight, CO2 and a pinch of phosphorus and nitrogen. The result has been that these artificial conditions best, with no extreme changes in temperature or currents or predators, have accelerated their life processes and reproductive rights. If the marine environment, the concentration of these beings is 300 in a cubic milliliter, in the BFS system reaches 200 million. Every day the hundreds of thousands of millions of people are divided into two every 12 hours. Thus biomass is served.

The bio-petroleum BFS has the black color of crude and has no sulfur or heavy metals to be incorporated into their fossilization. Organic matter is only cellulose and silicon membrane.

Every day, milking the cylinder removing half of it is centrifuged, the water is returned to the tank so that double the number of individuals in the next 24 hours and is the organic matter in pulp refining or dry coal .

In BFS achieve that in every two cubic meters of water, produced six kilos per day of biomass. This is thousands of times more than the annual crop of soybean, sunflower and palm, using much less land and less aggressively.

Use of biomass energy

Biomass is increasingly used in power generation in Europe with Germany as a key issue. Spain is also beginning to realize the potential of the field and produce electricity from this natural resource. Biomass is considered renewable energy because not only is inexhaustible when used in a sustainable way, but it also believes that its CO2 emissions are zero, because CO2 emissions are the same as the CO2 emitted by the plant during growth.

Traditionally, the farmer has always been a problem get rid of the waste generated by their crops, straw, yard trimmings, etc.. Now, all these residues can be used to generate electricity, either at home or at the industrial level.

Acciona opens in Bibriesca (Burgos) an elective generation plant straw-based biomass. The facility will produce 120 million kWh per year, equivalent to 881,000 barrels of oil, or the electricity consumption of 50,000 homes. This avoids the emission of 115,000 tons of CO2. It is true that the straw c have a very low heating power, which requires a great deal of material to get these figures. Specifically, we will need 100,000 tons of straw necessary. Some criticize that the benefits of using biomass to generate electricity is lost when it moved out the material needed for long distances, as in the case of the plant that Acciona has Sangüesa, which has 25 MW.

Acciona is already preparing another plants in Leon, which will have 25 MW and produce 200 million kWh per year and 175,000 tons of biomass burned annually. In this case, fuel will not only straw.

Moreover, agricultural residues are not the only biomass that can be harnessed to produce electricity. Also, and above all, we have forest residues. Forest residues are all plants, twigs and logs that are dried in the forest when the trees are falling branches or die. This is precisely one of the ways in which fires spread: in Spain is not enough forest cleaning, so the fire spreads easily through the forest through forest waste uncollected.

In Guadalajara have learned their lesson in 2005 after 11 people die a checkpoint trying to extinguish a large fire in the region. As a result. Since then, the area is said that 'the forest fire shuts down in winter', referring to the season in which forests are cleaned. As a result of the efforts of the institutions of the province, Iberdrola will open a biomass plant in Corduente 2 MW, which used only waste from forest cleaning.



Geographical aspects


Fr.gif   Nl.gif   Es.gif   Se.gif
1     1     1     1
2     2     2     2
3     3     3     3
             4

Economical aspects


Fr.gif   Nl.gif   Es.gif   Se.gif
1     1     1     1
2     2     2     2
3     3     3     3

Social aspects


Fr.gif   Nl.gif   Es.gif   Se.gif
1     1     1     1
2     2     2     2
3     3     3     3
             4

Political aspects


Fr.gif   Nl.gif   Es.gif   Se.gif
1     1     1     1
2     2     2     2
3     3     3     3